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) 1.0 PUBLICATIONS

During the year a number of publications appeared
;i} whose research was sponsored by the Grant. Copies of the
3§ first page of the papers are attached and will indicate the
Journals in which the papers appeared and the abstracts will
give an indication of the research contained in the papers.
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2.0 RESEARCH DIRECTIONS

In addition to the research reported in the pub-
lished papers referred to above, some progress was made in
relating the inverse scattering problem to causality. In
particular, Newton's "miracle" formula for the potential in
three-dimensional inverse scattering was derived purely from
causality considerations. Moreover, the one-dimensional
analogue indicated some possible problems when point eigen-
values were present. Termination of the grant precluded
completion of the paper and subsequent publication.
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5' e T ;ﬁEigenvalues and Eigenfunctions Associated with the
- Gel'fand-Levitan Equation;" J. Math. Phys., 25, 1,
: 108, January 1984,

~"Phases of Complex Functions from the Amplitudes of
) the Functions and the Amplitudes of the Fourier and

B Mellin Transforms;"™ J. Opt. Soc. Amer., 73, 1u51,
. November 1983. -

by

- -..,» "The Use of Comparison Filters in Linear Filter
» Theory," J. Math. Phys,, 24, 11, 2550, November 1983.
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.Elgenvalues and eigenfunctions assoclated with the Gol’fand-Levltan

Hany E. Moses®

Center for Atmaspheric Research, University of Lowell, Lowell, Massachusetts 01854 x

Reese T. Prosser

i

Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755 |
(Received 8 June 1983; accepted for publication 10 August 1983) i

It is shown here that the solutions of the Gel'fand—Levitan equation for inverse potential
scattering on the line may be expressed in terms of the eigenvalues and eigenfunctions of cettain
associated operators of trace class. The details are sketched for the case of rational refiection
coeficients, and carried out for the simplest class of examples. . ~

PACS numbers: 03.80. + r, 03.65.Nk

1. INTRODUCTION

The Gel'fand-Levitan equation plays a central role in
solving inverse scattering problems in one dimension.’ In the
case where the problem involves a scattering potential V (x)
defined for — o <x < + o, for example, we know that
¥ {x) may be recovered from the reflection coefficient rik ),
defined for — o0 <k < + o, as follows: set

R(x,y)=?(x+y)=—2-l;f " em ik )e- % gk, (1)
and then solve for X (x, y) the Gel'fand~Levitan equation
Ko+ R+ [ KuaReods=0. @)

Then the potential ¥ (x) appears as
Vi) = 20K (). o)
X

{See Ref. 2 for a general discussion of this procedure.)
In order to study the behavior of the solutions of (2), it is
useful to consider the associated equation, to be solved for

K (x, yw):

Kiwyw) + R + [ KinawiR s =0.
Evidently X {x, y,x) = K (x, y). Now (4) may be expressed in
operator form with w as a parameter:

Kw) + R+ KwPwR =0. (5)
Here R, K (w), and P{w) are integral operators with kernels
R (x, y), K (x, y,w), and P (x, y,w), with

Px, yw) = 0 (w — x)5{x — y). )
Here 0 (z) is the Heaviside function, and 5{(z) its derivative.

Now (4) yields

K(wh +PwR)= —R, y]
and hence, whenever (/ + P(w)R ) is invertible,
Kw)= —R(I+PwR)"" (8)

Now suppose that the reflection coeficient r{k ) is such
that its Fourier transform (z) is smooth and integrable. Then

“ Research Sponsored in part by AFOSR Grant No. 81-0253A.
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1

it follows that the operator P{u}R is of trace class for each w,

and N
u-r(wm-_r Nesdz. 9

One can then define the Fredholm determinant 4 (w) of the
operator (I + P(w)R ) by (cf. Ref. .3, p. 23561

4 (w) = detl/ + P(w)R )
= exp tr log{/ + P(w)R ). (10)
Evidently
IogA(w)-trlodI+P(w)R) (11)
andso .
4 '(w)
e TR |
= tr P'(wR{ + P(w)R )~
= — tr P'(w)K (w). {12)

Here we have used (8). But P'(w)K {(w) has kernel
Sw — x)K (x, yw), %0

— tr Pl () = ~ J' 8110 — x)K (x,x wkdx

= — K(wwuw)
= — K{ww). (13)
Hence by (3)

Viw) = Z—d-K (w,w)
dw

29 104 14
= — }';;k’l sk (14)

This formuls, which gives ¥ directly in terms of R, first
appears in Ref. 4, and has since been rediscovered by several
authors, including us.® In one sense, this formula by-passes
the Gel'fand-Levitan equation, since it gives ¥ directly in
terms of R, and once V is known everything about the scat-
tering problem is known, at least in principle.

In another sense (14} is no better than (4), since the cal-
culationofthedeterminant4 (w)of{(/ + P (wR )isnotusually
an easy matter in practice. One possible approach is to calcu-
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transform.

INTRODUCTION

19 most commonly used method used to obtain the phase
of a complex function f(x) of a real variable x is to take the
kogarithm of f(x), which in certain circumstances can be an-
slytically continued in the complex plane. The Hilbert
transform is then used to find the phase, which is the ratio of
the imaginary part of the logarithm to the real part; the real
part is the logarithm of the absolute value of the function. For
wnique results, the zeros of the anafytic function must be
prescribed. Various methods are used to find them from
physical measurements, which correspond to the use of ap-
propriate sets of apertures. A survey of approaches to the
phase-retrieval problem is given in Ref. 1. A recent method
for locating the zeros is given in Ref, 2.

As far as we can determine, the first departure from the use
of the Hilbert transform was given in 1963 by Lomont and
Moses.? The object of their approach was to give data in

. terms of intensities only. It was shown that a necessary and
-+ ¢ sufficient condition for two complex functions with the same
E;C ' amplitude to have the same phase within a constant was that
. - the squares of the amplitudes in Fourier-transform space be
o oqual for all apertures through which /(x) is observed. 1n 1971
. Gerchberg and Saston* independently used the input required
e by the theorem of Ref. 3 to obtain the phase and gave nu-
o merical methods to obtain it. In Ref, 5 the intensities in
E,-: . Fourier-transform space are also used, together with analytic
o ( Properties of the function and its transform, and, like the work
[ | of Ref. 4, that of Ref. 5 goes in a different direction from
i ours.
-j'.‘- In this paper we give simple formulas for phase retrieval
R | based on measurements using apertures arbitrarily close 1o
,',f\ 8 fixed aperture and its complement. We believe that our
:q‘; work is easier to use in many cases than that done earliet, l-

0030-3941/83/111451-04801.00
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Phases of complex functions from the amplitudes of the
functions and the amplitudes
of the Fourier and Mellin transforms

H. E. Moses

Center for Atmospheric Research, University of Lowell, 450 Aiken Street, Lowell. Mussuchusetts 01854

R. T. Prosser

Department of Mothemotics, Dortmouth College, Hunover, New Hampshire 03755
Received March 19, 1983; revised manuscript received June 20, 1983

For the most part, the phase-retrieval problem has been dominated by the use of the Hilbert transform on the loga-
rithm of the absolute value of the wave function. In our approach, by contrast, we use the intensity associated with
the function and the intensities in Fourier- or Mellin-transform space correaponding to a set of ape:cures to obtain
the phases within a constant by means of simple formulas. The set of apertures required is those arhitrarily close
to a fixed aperture and its complement. The higher-dimensional cases are also treated for the case of the Fourier

though numerical implementation has yet to be done using
our method. One of us {Moses) reviewed the material of Ref.
3 from a different point of view and showed also that the in-
tensities in the Mellin-transform space could be used instead
of those in the Fourier-transform space.®

Without going into detail, we report that the squares of the
amplitudes of Fourier transforms correspond (o intensities
of the spectral components in f(x) when the signal passes
through gratings of varying aperture. Another well-known
physical situation in which the function and its Fourier
transform occur is that of optical systems, in which it can be
shown that the wave functions in the aperture and the image
plane constitute a Fourier-transform pair.!

The applications of phase retrieval are many and important.
Among the applications are (dark-field) electron microscopy
and holography. Other applications are mentioned in Refs.
1and 5.

The significance of the Mellin transform in terms of scaling
is discussed in Ref. 7, in which a method is also given whereby
the intensities in the Mellin-transform space (in one dimen-
sion) can be obtained as a Fourier transform of a scale auto-
correlation. The optical importance of the Mellin transform
is discussed in Refs. 8 and 9, in which methads of imple-
menting the transform optically are discussed.

Although the Mellin tranaform can be obtained from the
Fourier transform by a change of variables, the two transforms
represent different situations. In Ref. 7 it is shown that peaks
in the Mellin-transform power spectrum correspond to fea-
tures in the original function that are periodic in magnifica-
tion. By contrast, peaks in the Fourier-transform power
spectrum correspond Lo features that are periodic in trans-
lation. 1t thus behooves us to study phase retrieval in terms
of the Mellin-teansform power spectra as well as spectra of the
Fourier transform.

<€ 1983 Optical Society of America
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The use of comparison filters in linear filter theory

Harry E. Moses®”
Center for Atmospheric Research, University of Lowell, Lowell, Massachusetts 01854

(Received 15 April 1983; accepted for publication 24 June 1983)

In the present paper, it is shown how the linear filter equation for a given correlation coefficient
can be solved in terms of the solution of the filter equation with a different correlation coefficient.
The second filter is called a comparison filter. One obtains an integral equation for the difference
of the two filters in terms of the difference of the two correlation functions and the solution of the
comparnison filter. Thus if the comparison filter is known and its correlation coefficient is close to
that of the desired filter, one may regard the comparison filter as being an approximation toit. The
difference of the two filters is then small and perturbation expansions or variational principles for
the difference may be expected to give better results than if one did not use a comparison filter.
The difference in the solutions of the two filter equations may also be regarded as the change (or
error} in the filter due to a change (or error) in the correlation coefficient. Our result is obtained by
pressing the close analogy of the filter equation to the Gel'fand-Levitan equation of inverse
spectral theory. Another result of the use of comparison filters is to show that the filter equation

for the difference of filter satisfies a possibly useful grouplike property.

PACS numbers: 02.30. + g, 02.30.Rz

i. INTRODUCTION

In Ref. 1, Kay and Moses treated the Gel’'fand-Levitan
equation of the inverse spectral theory problem from a very
general point of view and observed that the Gel'fand-Levi-
tan equation was a generalization of the filter equation of
that time, namely, the Wiener-~Hopf equation. This observa.
tion continues to hold for more general filters, for example,
the Kalman filter. Recently, one of us (Moses, Ref. 2) gave a
general scheme for introducing comparison potentials for
which the solution of the corresponding Gel'fand-Levitan
equation is known. The solution of any other Gel'fand-Levi-
tan equation could be expressed in terms of the known solu-
tion through the use of an integral equation for the difference
of the known and sought for Gel'fand-Levitan kernels. The
use of comparison potentials led to perturbation schemes
and variationsl principles which, in principle at least, led to
more accurate approximations for the desired Gel'fand-Le-
vitan kernel.

The purpose of the present paper is 10 give the analog
for the filter equation. It is shown how the linear filter equa-
tion for a given correlation coefficient can be solved in terms
of the solution of the filter equation with a different correla-
tion coefficient. The second filter is calied a comparison fil-
ter. One obtains an integral equation for the difference of the
two filters in terms of the difference of the two correlation
functions and the solution of the comparison filter. Thus if
the comparison filter is known and its correlation coefficient
is close to that of the desired filter, one may regard the com-
parison filter as being an approximation to it. The difference
of the two filters is then small and perturbation expansions
or variational principles for the difference may be expected
to give better results than if one did not use a comparison
filter.
The difference may also be regarded as the change (or

® Research sponsored by the Air Force Office of Scientific Research, under
Grant No. AFOSR-81-0283A.
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error) in the filter due to a change (or error)in the correlaig
coefficient. Another result of the use of a comparison filief
to show that the filter equation for the difference of filter
satisfies a possibly useful grouplike property.

Il. THE FILTER EQUATION AS A GEL'FAND-LEVIT
EQUATION

In dealing with the filter equation, we shall use stan
notation as given, for example, in Kailath's monograph {
3). The filter equation is then

hips)=Kits) — I hit,7)K (rs)dr {to <<t

In Eq. (1), A (1,5) is the filter matrix & (¢,5) = |4, (1,5)], and d
matrix X (1,5) = [ K, (1,5)] is related to the signal correlati
matrix R, (4,5) by

R (1) =1,6(t —s) + K{tsj=Eplt y'(t ). i
The Gel'fand-Levitan equation, as treated in Ref. 1, is ide
tical to the filter equation in which A (1,5} is the negative of t
Gel'fand-Levitankernel {¢ |X |5}, and thematrix K (¢,5}ist
driving kernel (1 [12 |s) of Ref. 1. To press the anasogy ev
further, it is useful to define the filter matrix as having th
triangularity property

hirs)=0 for s>1.

In the space of observables which include the signal:

¥t ), let us define the operators in terms of integral operatc
with kernels. Forexample, if /(f ) is in the space, we shall wr

hfir) fh(l.s)f(s)ds. R, fit)= I R, 15 fisud
tn [

and so on. Let us define the operator U by
Usui=s)— hfi).

In particular, if y{¢ ) is 8 signal,

‘e 1983 Amencan institute of Physics o







